Whole-Body Roll Tilt Influences Goal-Directed Upper Limb Movements through the Perceptual Tilt of Egocentric Reference Frame

نویسندگان

  • Keisuke Tani
  • Yoshihide Shiraki
  • Shinji Yamamoto
  • Yasushi Kodaka
  • Keisuke Kushiro
چکیده

In our day-to-day life, we can accurately reach for an object in our gravitational environment without any effort. This can be achieved even when the body is tilted relative to gravity. This is accomplished by the central nervous system (CNS) compensation for gravitational forces and torque acting on the upper limbs, based on the magnitude of body tilt. The present study investigated how performance of upper limb movements was influenced by the alteration of body orientation relative to gravity. We observed the spatial trajectory of the index finger while the upper limb reached for a memorized target with the body tilted in roll plane. Results showed that the terminal location of the fingertip shifted toward the direction of body tilt away from the actual target location. The subsequent experiment examined if the perceived direction of the body longitudinal axis shifted relative to the true direction in roll plane. The results showed that the perceived direction of the body longitudinal axis shifted toward the direction of the body tilt, which correlated with the shift of the terminal location in the first experiment. These results suggest that the dissociation between the egocentric and gravitational coordinates induced by whole-body tilt leads to systematic shifts of the egocentric reference frame for action, which in turn influences the motor performance of goal-directed upper limb movements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perceived self-orientation in allocentric and egocentric space: effects of visual and physical tilt on saccadic and tactile measures.

Do physical tilt and tilt of the visual environment affect perception of allocentric and egocentric space? We addressed this question using two perceptual-motor tasks: alignment of a tactile rod (ROD) and saccadic eye movements (EM). Nine participants indicated the vertical axis of their heads (egocentric task), as well as the direction of gravity (allocentric task). Head orientation (+/-60 deg...

متن کامل

Gravity influences the visual representation of object tilt in parietal cortex.

Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this...

متن کامل

Visuospatial memory computations during whole-body rotations in roll.

We used a memory-saccade task to test whether the location of a target, briefly presented before a whole-body rotation in roll, is stored in egocentric or in allocentric coordinates. To make this distinction, we exploited the fact that subjects, when tilted sideways in darkness, make systematic errors when indicating the direction of gravity (an allocentric task) even though they have a veridic...

متن کامل

Body-tilt and visual verticality perception during multiple cycles of roll rotation.

To assess the effects of degrading canal cues for dynamic spatial orientation in human observers, we tested how judgments about visual-line orientation in space (subjective visual vertical task, SVV) and estimates of instantaneous body tilt (subjective body-tilt task, SBT) develop in the course of three cycles of constant-velocity roll rotation. These abilities were tested across the entire til...

متن کامل

Does gravity influence the visual line bisection task?

The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018